Thermal Fingerprinting - Multi-Dimensional Analysis of Computational Loads
نویسندگان
چکیده
Digital fingerprinting is used in several domains to identify and track variable activities and processes. In this paper, we propose a novel approach to categorize and recognize computational tasks based on thermal system information. The concept focuses on all kinds of data center environments to control required cooling capacity dynamically. The concept monitors basic thermal sensor data from each server and chassis entity. The respective, characteristic curves are merged with additional general system information, such as CPU load behavior, memory usage, and I/O characteristics. This results in two-dimensional thermal fingerprints, which are unique and achievable. The fingerprints are used as input for an adaptive, pre-active air-conditioning control system. This allows a precise estimation of the data center health status. First test cases and reference scenarios clarify a huge potential for energy savings without any negative aspects regarding health status or durability. In consequence, we provide a cost-efficient, light-weight, and flexible solution to optimize the energy-efficiency for a huge number of existing, conventional data center environments.
منابع مشابه
A Predictive Model for the Combustion Process in Dual Fuel Engines at Part Loads Using a Quasi Dimensional Multi Zone Model and Detailed Chemical Kinetics Mechanism
This work is carried out to investigate combustion characteristics of a dual fuel (diesel-gas) engine at part loads, using a quasi-dimensional multi zone combustion model (MZCM) for the combustion of diesel fuel and a single zone model with detailed chemical kinetics for the combustion of natural gas fuel. Chemical kinetic mechanisms consist of 184 reactions with 50 species. This combustion mod...
متن کاملStress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads
In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...
متن کاملA Boundary Elements and Particular Integrals Implementation for Thermoelastic Stress Analysis
A formulation and an implementation of two-dimensional Boundary Element Method (BEM) analysis for steady state, uncoupled thermoelastic problems is presented. This approach differs from other treatments of thermal loads in BEM analysis in which the domain integrals due to the thermal gradients are to be incorporated in the analysis via particular-integrals. Thus unlike Finite Elements or Field ...
متن کاملFatigue Life Assessment of Composite Airplane Wing Subjected to Variable Mechanical and Thermal Loads
The purpose of this paper is to estimate the fatigue life of an airplane wing with laminated composite skin, subjected to variable mechanical and thermal loads. To achieve this aim,at first, the three-dimensional model of airplane wing was drawn in CATIA software. Then, by transferring the model to the ABAQUS software, the finite element model of the wing wascreated. H...
متن کاملThree-dimensional Magneto-thermo-elastic Analysis of Functionally Graded Truncated Conical Shells
This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017